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A formal analysis of circular variables is given. Sensible distance measures are derived for when
a circular variable is continous and for when it is discrete.

Continuous circular variables. The analysis begins by considering the simple real line. Each
point on the real line is uniquely assigned a single real number, so that two different numbers
denote two different points, as shown in Figure 1. The calculation of the distance between any two
such points is, trivially, the difference between their two assigned real numbers.
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Figure 1: Two points A and B are located at the positions aA and aB on the real line. Their
separation is, trivially, |aB − aA|.

But if the real line is wrapped around a circular cylinder, say, then the unique assignment fails
because there are infinitely many numbers each referring to the same point. That is, one number is
assigned for each wrapping instance. And the calculation of a distance measure between two such
points is therefore no longer as trivial.

Consider two points A and B located at the angular positions αA and αB on the circumference
of a circle of radius r, as shown in Figure 2. The two points’ smallest circumferential separa-
tion, S(αA, αB, r), is

S(αA, αB, r) = min(|αB − αA| , 2π − |αB − αA|)r

The use of functional notation for “S(αA, αB, r)” indicates explicitly the dependence of the circum-
ferential separation S on three variables, namely, A’s angular position αA, B’s angular position αB,
and the radius r of the circle. The ‘min’ function accepts two arguments, returning the numerically
lesser of the two. And conventionally, the angular positions αA and αB are measured in radians,
so that a single angular revolution equals 2π radians.
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Figure 2: Two points A and B are located at the angular positions αA and αB on the circumference
of a circle of radius r. Their circumferential separation is denoted S(αA, αB, r).
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The point circumferentially furthest from A is located at an angle αA + π. Its circumferential
separation from A is therefore

S(αA, αA + π, r) = min(π, 2π − π)r = πr

as expected.

However, while geometrically, a furthest distance equal to πr is sensible, it may seem arbitrary for
a variable for which no obvious geometric scale is apparent. Specifically, the choice of value for the
radius r is arbitrary. We therefore define a “normalized” separation D by setting r = 1/π so that
the furthest point from A is at a distance 1 from A. That is

D(αA, αB) =
1

πr
S(αA, αB, r)

=
1

π
min(|αB − αA| , 2π − |αB − αA|)

(1)

Thus D(αA, αA + π) = 1 for all αA.

The definition of separation D(αA, αB) suffices as a normalised distance measure between points
whose angular position assignments are constrained to lie in the interval [0, 2π). But this is re-
strictive. For example, for a variable used to store the day of the week, an appropriate inter-
val is [1, 8). And for a variable used to store the month of the year, an appropriate interval
is [1, 366) (or [1, 367) to account for leap years). It is therefore necessary to relax the constraints
that 0 ≤ αA < 2π and 0 ≤ αB < 2π.

Consider the linear transformation:

α(β) =

(
β − βlo
βhi − βlo

)
2π (2)

for some arbitrary βlo and βhi. It is clear that when β = βlo, α = 0. And when β = βhi, α = 2π.
Thus, by considering the αA and αB in (1) as functions of β, namely, αA = α(βA) and αB = α(βB),
and provided that we ensure that the circular variable value lies in the interval [βlo, βhi), we may
happily shift our attention from α as being the circular variable to β, as shown in Figure 3.
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Figure 3: Two points A and B are located at the angular positions α(βA) and α(βB) on the
circumference of a circle of radius r = 1/π, with α(β) given by (2). Their normalised circumferential
separation D(βA, βB) is given by (3).

Substituting (2) in (1) gives

D(βA, βB) =
2

βhi − βlo
min(|βA − βB| , βhi − βlo − |βA − βB|) (3)

with the functional notation “D(βA, βB)” now indicating explicit dependence of D on βA and βB
instead of on αA and αB.
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D(βA, βB) is defined using the ‘min’ and absolute value functions. It may alternatively be defined
with the absolute value function only. To achieve this we rely on the easily verifiable result that
for any real a and b,

min(a, b− a) =
b

2
−
∣∣∣∣a− b

2

∣∣∣∣
Recognising that (3) contains the form min(a, b− a), we obtain after some algebraic manipulation

D(βA, βB) = 1−
∣∣∣∣1− 2

βhi − βlo
|βB − βA|

∣∣∣∣ (4)

How may we assess the validity of this result? Firstly, consider any given value βA for the circular
variable β. We expect that the value “furthest” from βA to be βA + 1

2(βhi − βlo). We also expect
the separation between the values βlo and βhi to vanish. Using (4)

D(βA, βA +
1

2
(βhi − βlo)) = 1−

∣∣∣∣1− 2

βhi − βlo

∣∣∣∣βhi − βlo
2

∣∣∣∣∣∣∣∣ = 1 for any βA

And

D(βlo, βhi) = 1−
∣∣∣∣1− 2

βhi − βlo
|βhi − βlo|

∣∣∣∣ = 0

Discrete circular variables. Suppose that instead of our circular variable β being continuous
over the interval [βlo, βhi), its range of values is restricted to a finite set of M evenly spaced discrete
values. That is, suppose β = βm, m = 1, 2, . . . ,M . The circularity of β is represented in Figure (4).
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Figure 4: Points A1, . . . , AM are located at the angular positions α(β1), . . . , α(βM ) on the circum-
ference of a circle of radius r = 1/π, with α(βm) given by (2).

With β now discrete, what is the meaning of βhi? To be sure, βhi ̸= βM , because if it was, then
the distance separation of the final “sector” between AM and A1 (Figure (4)) would be lost when
moving from a continuous distance measure (4) to a discrete one. Instead, βhi must be thought of
as “lying alongside” β1, so that:

βhi = βlo +M(β2 − β1)

Substituting into (4) gives

D(βA, βB) = 1−
∣∣∣∣1− 2

M(β2 − β1)
|βB − βA|

∣∣∣∣ (5)

For example, consider a discrete circular variable having 5 allowable values (M = 5), as repre-
sented in Figure 5. We expect the point “furthest” from the discrete point A1 (with circular
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variable β = β1) to be located midway between points A3 and A4. The value of the circular vari-
able corresponding to that midway point is β3 +

1
2(β2 − β1), notwithstanding that in this example,

such a point is inadmissable. Then using (5) to calculate their separation,

D(β1, β3 +
1

2
(β2 − β1)) = 1−

∣∣∣∣1− 2

5(β2 − β1)

∣∣∣∣β3 + 1

2
(β2 − β1)− β1

∣∣∣∣∣∣∣∣
= 1−

∣∣∣∣1− 2

5(β2 − β1)

∣∣∣∣β1 + 2(β2 − β1) +
1

2
(β2 − β1)− β1

∣∣∣∣∣∣∣∣
= 1

(6)

as expected. For any set {β1, β2, β3, β4, β5} of 5 evenly spaced values, the matrix of separation
values may easily be calculated using (5) as:

β1 β2 β3 β4 β5

β1 0 2
5

4
5

4
5

2
5

β2
2
5 0 2

5
4
5

4
5

β3
4
5

2
5 0 2

5
4
5

β4
4
5

4
5

2
5 0 2
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Figure 5: Points A1, . . . , A5 are located at the angular positions α(β1), . . . , α(β5) on the circumfer-
ence of a circle of radius r = 1/π, with α(βm) given by (2).

In summary, combining the continuous (4) and the discrete distance measure (5) gives

D(βA, βB) =


1−

∣∣∣∣1− 2

βhi − βlo
|βB − βA|

∣∣∣∣ , βA and βB continuous.

1−
∣∣∣∣1− 2

M(β2 − β1)
|βB − βA|

∣∣∣∣ , βA and βB discrete. βA, βB = 1 . . .M.

(7)
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