Line-of-Sight Vector and the Viewing Plane
Paul Kotschy
31 May 2016
Compiled on July 10, 2025

Abstract

\ ng MY WORK,' I often need to conceptualise three-dimensional landscapes, and then to
@&U render them on paper or screen in two dimensions. Given the impressive TikZ system for
typesetting graphical content directly in a TEX document, I don’t want to have to look elsewhere.
As a typesetting system, TEX and TikZ make for a powerful and feature-rich pair, and TikZ
has a consistent and intuitive user-interface. But it is ostensibly a two-dimensional drawing
capability. I would like to typeset three-dimensional graphical landscapes and diagrams using
TikZ.

By working with the notion of a viewing plane perpendicular to a line-of-sight, I describe
how a three-dimensional landscape may be rendered by projecting it onto the viewing plane.
And by way of an example, I demonstrate how I now use TikZ, TEX and my PKREALVECTOR
C object class to typeset such three-dimensional landscapes with relative ease.

T declare this to be my own work, entirely. In particular, no AI was used in any research, analysis, synthesis,
writing, nor typesetting of this work. In short, AT was not recruited at any time in this work. Errors and inaccuracies
are therefore proudly my own.

Contents

1 A three-dimensional landscape 2
2 Line-of-sight 2
3 Angle of tilt 4
4 The landscape’s projection 4
4.1 Case S=0 e e 6
4.2 Case BF0 . . o e 6
4.3 Vector-centric solution for the case 5 #0. 7
5 Example 7
6 Drawing with TgpX, TikZ and PKREALVECTOR 8

1 A three-dimensional landscape

Suppose we are given a set of points {x = x1 + y2 + 23} which comprises a three-dimensional
“landscape”. As objective observers of this landscape, we are in fact unable to view at once this
landscape in its entirety. Instead, we pick a “line of sight” (normally subconsciously) relative to some
orientation of the landscape, and view a projection of the landscape onto the plane perpendicular
to this line of sight. Strictly speaking, we pick two lines of sight, one for each eye, and view two
projections, using the subtle differences between the two to infer depth in the landscape. But this
analysis considers only one of the projections.

To record graphically on paper or on screen what our one eye sees, we must represent the three-
dimensional landscape on paper. The landscape must first be specified (obviously). A line of sight
must then be chosen. And a projection must be calculated which can then be drawn on the paper.

The landscape shown in Figure 1 is simple. It consists of a single position vector

x =zi+y2+ 28

—~

1)
That is, the landscape consists of the quantities x, y, z, and the orthonormal vector basis {1, 2, 3}.
If the landscape is expressed in terms of an alternative basis, say {1’,2’,3'}, as

x = 2’1" +¢/2 + % (2)

and if the basis is oriented such that its 8’ basis vector is parallel to our desired line of sight, then
3’ cannot be rendered, because it would be oriented perpendicular to our page. But the projection
of x onto the 2’3" plane can be. It is simply x, = 2’1’ + 4’2, and 2’ and ¢’ can happily be drawn on
the paper to represent x. I shall call the 2’3" plane the viewing plane. This analysis, then, concerns
the calculation of xp in terms of i’ and 2’ to be located in the viewing plane.

2 Line-of-sight

The line of sight can be arbitrarily specified in the landscape. In this analysis I choose to specify
a line-of-sight vector 1 as

1(a, 8,7) =8 (a, B,7) = cosari + cos 52 + cos v 3 (3)

Figure 1: A three-dimensional landscape specified as a single position vector x = zi +
y2+ 28. The projection vector x, of x is calculated to lie in the 1’2" viewing plane which
lies perpendicular to the chosen “line-of-sight” vector 1=4.

for some angles «, 8 and «, as shown in Figure 2. The vector is of unit length provided that

2 — cos? B = sin? § — cos® (4)

cosQ'y =1—cos

Figure 2: Specification of the line-of-sight vector, 1 = 8’ = cos ai+cos 82+cos~3, subject
to cos? a + cos? B+ cos?y = 1.

So we proceed using the three angles «, § and 7, but remembering that only two of the three are
independent and can therefore be used as input parameters. Furthermore, if o and § are used as
the input parameters, to ensure that 7 is a real quantity, a and 8 must satisfy

sin 8 > cosa

By specifying a line-of-sight vector 1 in the 123 space (Figure 2), we can think of 1 helping to fix 1,
5 and 3 in the 1’2’3’ space.

3 Angle of tilt

But the fixing is not complete. Indeed, 1 can be rotated onto 2, 2 onto 3, and 3 onto 1 without «,
B and ~ changing. An additional constraint is therefore needed. I choose to fix the angle of tilt of
the 2 basis vector relative to the 2’8’ plane, naming the angle @, as shown in Figure 3.

sin 3 cos 0

Figure 3: Specification of the angle of tilt, 6, as the angle subtended between the 2 basis
vector and the 2’8’ plane in a direction perpendicular to the 2’3" plane.

By inspecting the various distances derived from the definitions of 8 and 6, the 2 basis vector may
at once be expressed in terms of {1’,2",3'} as

3= —sinfBsinf1’ +sinBcosh?d + cosp3 (5)

4 The landscape’s projection

If the 1, 2 and 3 basis vectors which span our given landscape can be expressed in terms of i’, 2
N . ..
and 3’ then so can any vector, such as x, also be. So we begin by writing

i=a;1" +a® +asd
3= bli, + bgﬁl + bgf’,/ (6)
3= Cli/ + 022, + 633/

with the objective of solving for aq, as, ..., c3, subject to the conditions (3), (4), (5), and the

orthonormality of the {i,2,3} vector basis:

i-2=2-3=0
i-1i=38-3=1 (7)

We know immediately from (5) that

b1 = —sinBsinf
by = sin B cos 6 (8)
bs = cos B

Substituting (5), (6) and (8) into (3) gives
cosa(a; i’ +ag? +az8) + cosB(—sinBsinf1’ +sinBcosh2’ 4 cos 33)
+cosy(erl +cd +c38)=4
And rearranging,
3" = (cosaa; —sin B cosBsinf + cosycy) i’
+ (cos aag + sin B cos 3 cos § 4 cosy ca) 2’
+ (cosavag 4 cos® B+ cosvyc3) 8
And since 1’, 2’ and 3’ are linearly independent,
cosaal + cosycy = sin B cosFsinf
cosaag + cosyco = —sin B cos B cosf
cosaas +cosyes = 1 —cos? B =sin?

from which
Cos & sin 3 cos (3 sin 0
a; +

Ccl = —
CoS 7y cos 7y
Cos & sin 8 cos 5 cosf
2 = — az — (9)
CoS 7y COS Y
cos & sin’ 3
c3 = — as
coS 7y cos 7y

The four orthonormality conditions in (7) give

1-2 = —sinfsinfay +sinfBcosfas +cosBaz = 0

2.3 = —sinfsinflc; +sinfBcosfcy +cosBez = 0
i-i=al+a3+a}=1 (10)
3-3=c+c+c2=1

Substituting (9) into the fourth condition in (10) gives

(—cosavay + sin B cos Bsin#)? 4 (—cosaag — sin §cos B cos) + (— cos a ag + sin? B)Q = cos’y
cos® a(a? + a3 + a3) + (sin B cos B)?(sin® @ + cos? 0) + (sin? B)?
+ 2 [sin /3 cos 3 cos ar(cos @ ag — sin B ay) — sin® B cos a ag} = cos? v
Using the third condition in (10), this may by simplified to
sin 3 [cos B(cos @ ag — sinfay) —sin fag) + cosa = 0
But from the first condition in (10),

cos 3

cosfag —sinfa; = —— as
sin 3
So
sin 3 [cosﬁ < C?SB ag) — sinﬂag] +cosa = 0
sin 3
Solving for asz gives
as = cosa

This result for az may now be substituted into the first and third conditions in (10) to give

sin 8 (sinfa; — cosfay) = cosacosfB

9 9 (11)

a? +a3 = 1—cos’a = sin®a

4.1 Case =0

If B =0, then the first condition in (11) requires that a = (2n + 1)% and v = (2m + l)g for any

integers n and m. Using the second condition in (11), together with the further orthonormality

condition 1 -3 =0, gives

i=ai’+4/1-a??
3=3
3=—\/1-a?i +a1?

In this form, 1, 2 and 3 satisfy all the orthonormality constraints (Eq. (7)), which means that a; is
a free parameter. I shall choose to use the specified value of 6 to fix a; by setting the angle between
i and 1’ equal to 6, so that 1 -1’ = cosf. In this case 3 = 0 then, our basis vectors are

4.2 Case §#0

cos@1' +sinf?
' (12)
3=—sinfi +cosf?

i

N>
I
W

When f # 0, the two simultaneous equations in (11) may easily be solved for a; and as, giving

a

a2

Or using (4),

ai

ag =

2
COS (¢ COS cos? o
= _7ﬁsir194r 1——
sin 3 sin® 8

cosf
cos?a . cos a cos 3
1 - ——— sinf — ————cos¥d
sin® 8 sin 8

— (cos acos B sin B + cosy cos @)
sin

— (cosysin @ — cos acos (3 cos @)
sin 3

Direct substituting into (9), and after some simplification, gives

Cc1 =
Cy =

C3 =

With the solutions to ay, ao, ...

1’2’3’ space ((5) and (6)) as

>
Il

1
sin 3

(cos avcos Bsin @ + cosycosf) i’ +

1
(cosy cos Bsin @ — cos acos 0)
sin 8
1
—— (—cos asin @ — cosy cos (3 cos 0)
sin
cos 7y

c3, we are now able to express the 1, 2 and 3 basis vectors in the

(cosysin@ — cos acos fcos) 2’ + cos a §’

1
sin 3

5= —sinBsinf1’ + sinBcosh2' + cos 33

>
I

(cosycos Bsinf — cosacos)i’ +

3
- (—cosozsim@—cosvcos,é’cos@)ﬁ’—kc:osvg;l)
sin

provided that cosy = /1 — cos2 a — cos? f3.

A

And consequently, any vector x embedded in the 123 space (Equation (1)) is transformed into the
same vector in the 1'2'3" space (Equation (2)) as:

+y2 + 28
[(cosacos fsinf + cosycosf) xz — sin fsinfy + 5(cos*ycosﬁsin@—cosacos@)z} i’
sin
1 A
{ (cosysinf — cosavcos B cos @) x + sin S cosOy + S p (—cosasinf — cosvcosﬁcosa()ﬁkz/
sin

[cosaa:%—cos,@’y—i—cosyz

4.3 Vector-centric solution for the case 5 # 0.

The task is essentially complete because the projection vector xp is obtained by simply discarding
x’s 3’ component in (14). But it would be interesting to recast (14) in a more vector—centric way.
Consider, firstly, x’s i’ component. Rearranging the terms,

sin Bz’ = (xcosa + ycos B+ 2 cosy) cos Bsin @ — ycos® Bsin @ + (x cosy — zcosa) cos b
— ysin? Bsin 0
= (xcosa+ycosf + zcosy)cos Bsinf — ysinf — (z cosa — x cosy) cos O
= cosfsinfx -8 —sinfx-2 —cosf(x x8)-2
= cosfsinfx -8 —sinfx-2—cosf(x x8)-2+cosfcosB(x x38) 8§
because (x x 8') -3 =0

Factorising gives

¥ = snllﬁ (sin9x+cos¢9x xi) . (cosﬁi—ﬁ)

The 2" and 8’ components may be calculated similarly, giving

x = 2'i' +¢/3 + 7%
1 A A A\ »
= — (sin@x—i—cos@xxl)-(cosﬁl—2)1/
sin (15)
+ 1 (—cos@x+sin9x><i)-(cosﬁi—ﬁ)i/
sin 3
+ (x-1)%

The result gives a prescription for the transformed landscape (namely, x in the i'2'8" space) in
terms of the original landscape (x in the 123 space), the specified angles 5 and 6, and the specified
line-of-sight vector 1 (Eq. (3)).

5 Example
Suppose that we wish our line-of-sight vector 1 to lie on the i3 plane. For this we would need
to specify 8 = g (or 90°). From (3), our line-of-sight vector becomes 1 = cosai+sina3, so

x x 1 = ysinai 4 (zcosa — zsina)2 — ycosad. And from (15), our transformed landscape
becomes

x = ((zsina — zcosa) cosf — ysin)1’
+ ((zsina — zcos @) sin § + y cos 0)2
+ (zcosa + zsina)3’

© 00 N O Ut R W NN

e e e e
0 N O U = W N~ O

If we decide now to not impose any angle of tilt, so 8 = 0:
x = (zsina — zcosa)l’ +y2 + (vcosa + zsina)d’
Finally, if we wish for our line-of-sight vector to coincide with the 3 basis vector, so a = g:
x = zi’ +y2' + 28

as expected.

6 Drawing with TEX, TikZ and PKREALVECTOR

In this section I demonstrate the combined use of TEX, TikZ and my PKREALVECTOR C object class
to produce three-dimensional schematic diagrams in TEX, such as this one:

A

2

LN

=>

(Y3

It works as follows. Suppose we wish to typeset a PDF-formatted document containing a single
diagram of three planar projections of a surface embedded in R?, as shown above. We’ll begin with
a UNIX Makefile. UNIX’s MAKE system is an excellent tool to help manage TEX-typesetting
projects. Prepare a MAKE configuration file named Makefile with the content:

__
Generic Make targets.
#
all: projections.pdf
clean:
Orm -f projections.pdf
@rm -f *.0
O@rm -f *.run three-projections.tex
__
File based Make targets.
#
projections.pdf: projections.tex three-projections.tex
__
Implicit rule targets.
#

19 .SUFFIXES: .c .o .run .tex .pdf

20 .C.0:

21 clang -c -DDEBUG=2 -I/usr/local/pklib/include -DFreeBSD -o ${@} ${<}
22 .o.run:

23 clang -DDEBUG=2 -I/usr/local/pklib/include -DFreeBSD -o ${@} \pkShellSlash
24 ${<} \pkShellSlash

25 /usr/local/pklib/lib/libpk.a \pkShellSlash

26 /usr/local/pklib/1ib/libpkmath.a \pkShellSlash

27 -1m

28 .run.tex:

29 L/8{<} > ${e}

30 .tex.pdf:

31 pdflatex ${<%

© 00 N O Ut e W N

=
= O

© 00 N O Ut W N

L e e S
N O Ut R W N = O

This simple “Makefile” for MAKE captures all the necessary file dependencies, and will trigger the
required actions in accordance with these file dependencies. MAKE’s make command will read this
Makefile and use it to typeset a TEX input file named projections.tex. The output will be a
PDF-formatted file named projections.pdf. Prepare the projections.tex with the content:

\documentclass [adpaper,1ipt]{article}
\usepackage [T1]{fontenc}
\usepackage{lmodern}
\usepackage{pktikz}

\begin{document}

\pagestyle{empty}

\begin{center}
\input{three-projections.tex}

\end{center}

\end{document}

This projections.tex TEX source file \input’s another external TEX source file named
three-projections.tex, expecting that file to contain the TikZ source code instructions for type-
setting the diagram. But that file should not exist yet. Instead it will be generated dynamically as
the output of the execution of the three-projections.run executable program, which in turn will
be created by compiling the C code located in a file named three-projections.c. Actually, by
virtue of the abovementioned Makefile, you simply needed to type make (or make all) to create
the final document file, projections.pdf

Prepare the three-projections.c C source file as follows. Note that the listing below includes
typesetted annotations. Just follow the source line numbers.

/*

* This C source file has been primed to be typeset using my

* pkTechDoc literate programming system. PJ Kotschy. 18Mayl6.
*/

#include <pkfeatures.h>

#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>

#include <pkmemdebug.h>
#include <pkerror.h>
#include <pktypes.h>

18
19
20
21
22
23
24
25
26
27
28
29
30

#include <pkstring.h>

#include <pkmath.h>

#include <pkrealvector.h>

const char *LOGFNAME = "/tmp/diagram.log";

void _printVector(const PKREALVECTOR *v)

{
printf("Vector %s = (", pkRealVectorGetName(v));
pkRealVectorPrintf(v, "__COMPONENTVALUE__", ", ");
puts(")n);
return;

}

The _diagram() private function below specifies the diagram’s three-dimensional landscape. It
does this primarily using the PKREALVECTOR object class. The function prints to standard output
a body of TikZ source code which may be used to typeset the landscape in TEX.

But before this function can do so, it must transform the landscape in such a way that what
TikZ typesets is a two-dimensional projection of the three-dimensional landscape. The function
rotationally transforms the landscape onto the space spanned by the {i’,2’, 8’} orthonormal vector
basis set, where the i’ and 2’ basis vectors lie in the plane of the page and 3’ is perpendicular to

the page, i.e., lying parallel to the reader’s line of sight.

In the function, the alpha («) and beta (() are required for the transformation. The angle « lies
between between the landscape’s 1 basis vector and 3'; 3 is the angle between the landscape’s 2
basis vector and 3'; and 6 is the tilt angle between 2 and the 2’3’ plane. The actual transformation
is affected by the call

pkRealVectorsUnderLineOfSightBasis2(alpha, beta, theta

el, e2, e3,
NULL)
31 static void _diagram(void)
32 o
33 const PKMATHREAL alpha = 70.0 / 180.0 * M_PI,
34 beta = 60.0 / 180.0 * M_PI,
35 theta = 00.0 / 180.0 * M_PI;
36 PKREALVECTOR *el, *e2, *e3, /* Orthonormal basis vectors. */
37 *xv [4] [4], /* Four planes, four vertices per plane. */
38 *C, /* Geometric centre of the plane. */
39 *1, /* Average normal vector. */
40 *p; /* Point at ’c+n’. */
41 int i, j;
42

Here we specify the three-dimensional landscape.

43 el = pkRealVectorAllocl1("\\one", 3, 6.0, 0.0, 0.0);

44 e2 = pkRealVectorAlloc1("\\two", 3, 0.0, 6.0, 0.0);

45 e3 = pkRealVectorAlloc1("\\three", 3, 0.0, 0.0, 6.0);

46 pkRealVectorScale(el,1.1);

47 pkRealVectorScale(e2,0.8);

48 pkRealVectorScale(e3,1.1);

49

50 v[0] [0] = pkRealVectorAllocl("\\vecVone", 3, 1.0, 1.0, 6.0);
51 v[0] [1] = pkRealVectorAllocl("\\vecVtwo", 3, 6.0, 1.0, 1.0);

10

52 v[0] [2] = pkRealVectorAllocl("\\vecVthree", 3, 3.0, 4.0, 1.0);

53 v[0] [3] = pkRealVectorAllocl("\\vecVfour", 3, 1.0, 3.0, 4.0);

54 for (i=1;1i<4; i++) {

55 for (j =0; j < 4; j++)

56 v[il [j] = pkRealVectorAllocO("", 3, pkRealVectorGetComponent(v[0][jl));
57 }

58 for (j =0; j <4; j++) {

59 pkRealVectorGetComponent (v[1] [j]1) [0] = 0.0;

60 pkRealVectorGetComponent (v[2] [j1) [1] = 0.0;

61 pkRealVectorGetComponent (v[3][j]1) [2] = 0.0;

62 }

63

64 ¢ = pkRealVectorAlloc1("\\vecC", 3, 0.0, 0.0, 0.0);

65 for (j =0; j < 4; j++)

66 pkRealVectorIncrease(c, v[0][j]);

67 pkRealVectorScale(c,0.25);

68 {

69 PKREALVECTOR *d1 = pkRealVectorAllocDiff("di", v[0][2], v[0][0]),
70 *d2 = pkRealVectorAllocDiff("d2", v[0][3], v[0][1]);
71 n = pkRealVectorAllocCrossProduct("\\vecN", d1, d2);

72 pkRealVectorFreeDiff (d1);

73 pkRealVectorFreeDiff (d2);

74 }

75 pkRealVectorNormalise(n) ;

76 pkRealVectorScale(n,12.0);

77 p = pkRealVectorAllocSum("p", c, n);

Rotationally transform the landscape onto the space spanned by the abovementioned “line-of-site”
basis.

78 if (0 == pkRealVectorsUnderLineOfSightBasis2(alpha, beta, theta,

79 el, e2, e3,

80 v[ol[o]l, v[ol[1], v[ol[2], v[0]([3],
81 v[1l[ol, v[11[1], vI[11[2], v[11([3],
82 v[2]1[0], v[2]1[1], v[2]1[2], v[2][3],
83 v([3][0o], v[3][1], v[3][2], v[3][3],
84 c, n, p,

85 NULL)) {

86

Output TikZ source code to typeset a projection of the transformed landscape. The projection is
easy because, under the transformation, the 3-component of all points and vectors now points out
of the page, parallel to 3.

87 puts("\\begin{PkTikzpicturel}[scale=1.0]");
88 puts(C " %");

89 puts(" ¥%\\draw[help lines] (-0.2,-0.2) grid (7.1,5.1);");
90 puts(C " %");

91 puts(C " \\coordinate (origin) at (0,0);");
92 printf(" \\coordinate (v0) at (%g,%g);\n"
93 " \\coordinate (v1) at (%g,%g);\n"
94 " \\coordinate (v2) at (%g,%g);\n"
95 " \\coordinate (v3) at (%g,%g);\n"
96 " \\coordinate (c) at (%g,%g);\n",
97 pkRealVectorGetComponent (v [0] [0]) [0],
98 pkRealVectorGetComponent (v [0] [0]) [1],
99 pkRealVectorGetComponent (v [0] [1]) [0],
100 pkRealVectorGetComponent (v[0] [1]) [1],
101 pkRealVectorGetComponent (v[0] [2]) [0],
102 pkRealVectorGetComponent (v [0] [2]) [1],

11

103 pkRealVectorGetComponent (v [0] [3]) [0],

104 pkRealVectorGetComponent (v [0] [3]) [1],
105 pkRealVectorGetComponent (c) [0],
106 pkRealVectorGetComponent (c) [1]) ;
107 putsC " %");
108 printf(" \\draw[pktikzbasisvector,<->]\n"
109 " (%g,%g) nodelright]{$%s$} --\n"
110 " (origin) --\n"
111 " (hg,%hg) nodel[abovel {$%s$};\n"
112 " \\draw[pktikzbasisvector,->]\n"
113 " (origin) --\n"
114 " (%g,%g) nodelbelow left]{$%s$};\n",
115 pkRealVectorGetComponent (el) [0], pkRealVectorGetComponent(el) [1],
116 pkRealVectorGetName(el),
117 pkRealVectorGetComponent (e2) [0], pkRealVectorGetComponent (e2) [1],
118 pkRealVectorGetName (e2),
119 pkRealVectorGetComponent (e3) [0], pkRealVectorGetComponent (e3) [1],
120 pkRealVectorGetName(e3));
121 putsC " %");
122 for (i=1; i< 4; i++) {
123 printf(" \\draw[pktikztranslucentsurface]\n"
124 " (%g,%hg) —-—\n"
125 " (%g,%g) ——\n"
126 " Chg,%hg) ——\n"
127 " (%g,%hg) -- cycle;\n",
128 pkRealVectorGetComponent (v[i] [0]) [0],
129 pkRealVectorGetComponent (v[i] [0]) [1],
130 pkRealVectorGetComponent (v[i] [1]) [0],
131 pkRealVectorGetComponent (v[i] [1]) [1],
132 pkRealVectorGetComponent (v[i] [2]) [0],
133 pkRealVectorGetComponent (v[i] [2]) [1],
134 pkRealVectorGetComponent (v[i] [3]) [0],
135 pkRealVectorGetComponent (v[i] [3]1) [1]);
136 b
137 putsC " %");
138 printf(" \\draw[pktikztranslucentsurface] (v0) -- (v1) -- (v2) -- (v3) -- cycle;\n"),
139 printf(" \\path (v0) coordinate[pktikzpoint,label=below:$%s$] --\n"
140 " (v1) coordinate[pktikzpoint,label=right:$%s$] --\n"
141 " (v2) coordinate[pktikzpoint,label=above:$%s$] --\n"
142 " (v3) coordinate[pktikzpoint,label=left:$%s$];\n",
143 pkRealVectorGetName (v [0] [0]),
144 pkRealVectorGetName (v [0] [1]),
145 pkRealVectorGetName (v[0] [2]),
146 pkRealVectorGetName (v[0] [3]));
147 putsC " %");
148 printf(" \\path (c) coordinate[pktikzpoint,label=below:$%s$];\n",
149 pkRealVectorGetName(c));
150 printf(" \\draw[pktikzemphvector]\n"
151 " () --\n"
152 " (%g,%g) nodel[black,very near end,below]{$%s$};\n",
153 pkRealVectorGetComponent (p) [0],
154 pkRealVectorGetComponent (p) [1],
155 pkRealVectorGetName(n));
156 puts("\\end{PkTikzpicturel}");
157
158 } else {
159
160 puts("ERROR: ’pkRealVectorsUnderLineOfSightBasis2()’ failed.");
161
162 }
Clean up.

12

163 pkRealVectorFreel(el);

164 pkRealVectorFreel(e2) ;

165 pkRealVectorFreel(e3) ;

166 for (i =0; i< 4; i++) {

167 for (j =0; j < 4; j++)

168 pkRealVectorFreel (v[i] [j1);
169 }

170 pkRealVectorFreel(c);

171 pkRealVectorFreeCrossProduct (n) ;
172 pkRealVectorFreeSum(p) ;

173

174 return;

175}

176

177 int main(const int argc, const char *argv([])
178 {

179 _diagram();
180 exit (0);
181 T

13

