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Abstract

I
n this study I take a tour of rotational transformations in three-dimensions. I begin with
the well-known formulae for performing rotations in two dimensions. I then generalise to

three dimensions, deriving a useful coordinate-free formula.
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1 Two-dimensional rotations

The description of the rotation of any point on the two-dimensional Euclidean plane is well-known.
Such a point may be represented by the position vector

x(1̂, 2̂) = x1̂ + y2̂ + 03̂

Writing the point in this form emphasises that the Euclidean plane E2 in two-dimensions is the set
of all linear combinations of the 1̂ and 2̂ basis vectors:

E2 = {x1̂ + y2̂ | x = x · 1̂, y = x · 2̂ ∈ R; 1̂ · 1̂ = 2̂ · 2̂ = 1, 1̂ · 2̂ = 2̂ · 1̂ = 0}

The set {1̂, 2̂} is called an orthonormal basis of E2.

It it common practice to represent such vectors with a uni-columnar matrix:

x =
[
x
y

]

But I prefer not to because doing so assumes that the 1̂ and 2̂ basis vectors are represented with

1̂ =
[
1
0

]
and 2̂ =

[
0
1

]
(1)

That is
x(1̂, 2̂) =

[
x
y

]
= x

[
1
0

]
+ y

[
0
1

]
I think it preferable to be explicit about which vector basis is used.

Rotate a vector about the origin. A rotation of the position vector x(1̂, 2̂) about the origin
through some angle θ is shown schematically in Figure 1. It is evident that

x = |x| cosψ, y = |x| sinψ, x′ =
∣∣x′∣∣ cos(θ + ψ), y′ =

∣∣x′∣∣ sin(θ + ψ) (2)
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Figure 1: Rotation in two-dimensions about the origin.
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A fundamental property of rotation transformations is that they are length preserving. So when x
is rotated onto x′, its distance from the origin does not change. That is, |x′| = |x|, giving

x′(x, y, θ) = |x| (cos θ cosψ − sin θ sinψ) = cos θ x− sin θ y
y′(x, y, θ) = |x| (sin θ cosψ + sinψ cos θ) = sin θ x+ cos θ y

(3)

The rotation transformation is therefore

R(θ) : x(1̂, 2̂) 7→ x′(θ; 1̂, 2̂) = R(θ)x(1̂, 2̂)
= [R(θ)x(1̂, 2̂) · 1̂] 1̂ + [R(θ)x(1̂, 2̂) · 2̂] 2̂

= [x · (cos θ 1̂ − sin θ 2̂)] 1̂ + [x · (sin θ 1̂ + cos θ 2̂)] 2̂

(4)

If we wish to represent the vector x in matrix notation, then we may write[
x′

y′

]
(x, y, θ) =

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
provided that we represent 1̂ and 2̂ with (1). We identify the rotation with the well-known matrix

R(θ) =
[
cos θ − sin θ
sin θ cos θ

]
(5)

Rotate a vector about a point p. To rotate the position vector x(1̂, 2̂) about some other point
p = p11̂ + p22̂, other than the origin, as shown in Figure 2, the transformation may be done by
first translating x through −p, rotating through θ, and then translating back through p.

2̂

1̂

x

x′

θ

p1

p2 p

Figure 2: Rotation in two dimensions about an arbitrary point p.

The translation through p is

T (p) : x(1̂, 2̂) 7→ x′(p; 1̂, 2̂) = T (p)x(1̂, 2̂)
= [(x + p) · 1̂] 1̂ + [(x + p) · 2̂] 2̂

(6)

It is then easy to verify that the rotation of the position vector x about p through angle θ is given
by the composite transformation

T (p)R(θ)T (−p) : x(1̂, 2̂) 7→ x′(θ,p; 1̂, 2̂)
= T (p)R(θ)T (−p)x(1̂, 2̂)
= [(x − p) · (cos θ1̂ − sin θ2̂) + p · 1̂] 1̂

+ [(x − p) · (sin θ1̂ + cos θ2̂) + p · 2̂] 2̂

(7)

Suppose, for example, that θ = π

2 and p = 21̂ + 12̂, as shown in Figure 3. Then using (7) the point
x = 31̂ + 12̂ is rotated to x′ = 21̂ + 22̂, and the point x = 31̂ + 02̂ is rotated to x′ = 31̂ + 22̂, as
expected.
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Figure 3: Rotations in two dimensions about point p = 21̂ + 12̂ through angle θ = π

2 .

Rotate the space. We have thus far considered rotating a point by transforming the point’s
position vector. That is, under the action of the transformation, the position vector changes while
the underlying space is held constant. However, an almost equivalent consideration is for the vector
to be held constant and for the space to change. I show the equivalence using two approaches. The
first approach is an intuitive one.

In (4), the point’s position vector x1̂ + y2̂ was transformed to x′(x, y, θ)1̂ + y′(x, y, θ)2̂, which
is obviously a different vector. But suppose the position vector is held constant, and is simply
expressed under a new orthonormal basis set {1̂′, 2̂′} of E2 which has been rotated about the origin
through an angle ϕ, say, relative to the {1̂, 2̂} basis. Then we must be able to write

x1̂ + y2̂ = x(1̂, 2̂)
= x(ϕ; 1̂′(ϕ; 1̂, 2̂), 2̂′(ϕ; 1̂, 2̂))
= x̄(x, y, ϕ)1̂′(ϕ; 1̂, 2̂) + ȳ(x, y, ϕ)2̂′(ϕ; 1̂, 2̂)

(8)

for some x̄(x, y, ϕ) and ȳ(x, y, ϕ). The abovementioned equivalence can be established if we can find
the conditions under which x̄(x, y, ϕ) = x′(x, y, θ) and ȳ(x, y, ϕ) = y′(x, y, θ). A rotation of the {1̂, 2̂}
basis set about the origin through angle ϕ onto {1̂′(ϕ; 1̂, 2̂), 2̂′(ϕ; 1̂, 2̂)} is shown schematically in
Figure 4. Noting that in the diagram, ϕ < 0, we have

1̂′ =
∣∣∣1̂′

∣∣∣ cosϕ 1̂ +
∣∣∣1̂′

∣∣∣ sinϕ 2̂ = cosϕ 1̂ + sinϕ 2̂

2̂′ = −
∣∣∣2̂′

∣∣∣ sinϕ 1̂ +
∣∣∣2̂′

∣∣∣ cosϕ 2̂ = − sinϕ 1̂ + cosϕ 2̂

2̂

1̂

2̂′

1̂′

x

ϕ x

y

x̄

ȳ

Figure 4: Rotation of the 1̂ and 2̂ basis vectors in two-dimensions about the origin through
angle ϕ, with position vector x held constant.

Substituting into (8),

x1̂ + y2̂ = (cosϕ x̄− sinϕ ȳ)1̂ + (sinϕ x̄+ cosϕ ȳ)2̂
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Since 1̂ and 2̂ are linearly independent,

x̄(x, y, ϕ) = cos(−ϕ)x− sin(−ϕ) y
ȳ(x, y, ϕ) = sin(−ϕ)x+ cos(−ϕ) y

(9)

Comparing (9) with (3), the equivalence is established whenever ϕ = −θ. That is, the coordinates
of a vector which has been rotated through a given angle θ equals the coordinates of the original
vector but which is now expressed in a coordinate system which has been rotated through an
angle −θ.

The second approach is algebraic. Consider rotating the 1̂ and 2̂ basis vectors about the origin
through an angle (−θ). Applying (4), the rotation of 1̂ about angle (−θ) is

R(−θ)1̂ = [1̂ · (cos(−θ)1̂ − sin(−θ)2̂)] 1̂ + [1̂ · (sin(−θ)1̂ + cos(−θ)2̂)] 2̂

= cos θ 1̂ − sin θ 2̂

And the rotation of 2̂ about (−θ) is

R(−θ)2̂ = [2̂ · (cos(−θ)1̂ − sin(−θ)2̂)] 1̂ + [2̂ · (sin(−θ)1̂ + cos(−θ)2̂)] 2̂

= sin θ 1̂ + cos θ 2̂

Define two new vectors 1̂′ = R(−θ)1̂ and 2̂′ = R(−θ)2̂. Since 1̂′ · 2̂′ = 0 and 1̂′ · 1̂′ = 2̂′ · 2̂′ = 1,
{1̂′, 2̂′} forms an orthonormal basis. Expressing our vector x under this basis, we have:

x(1̂′, 2̂′) = (x · 1̂′)1̂′ + (x · 2̂′)2̂′

= [x · (cos θ 1̂ − sin θ 2̂)] 1̂′ + [x · (sin θ 1̂ + cos θ 2̂)] 2̂′

= [R(θ)x(1̂, 2̂) · 1̂] 1̂′ + [R(θ)x(1̂, 2̂) · 2̂] 2̂′ by comparision with (4).

But x(1̂′, 2̂′) is exactly the vector x(1̂, 2̂). It is just expressed under the {1̂′, 2̂′} basis. Therefore,
we deduce that the components of a vector rotated in space about the origin are equal to the
components of the vector in the space inversely rotated about the origin. Finally, to verify that we
are dealing with the same vector:

x(1̂′, 2̂′) = [x · (cos θ 1̂ − sin θ 2̂)] 1̂′ + [x · (sin θ 1̂ + cos θ 2̂)] 2̂′

= [x · (cos θ 1̂ − sin θ 2̂)] (cos θ 1̂ − sin θ 2̂) + [x · (sin θ 1̂ + cos θ 2̂)] (sin θ 1̂ + cos θ 2̂)
= [x · 1̂] 1̂ + [x · 2̂] 2̂

= x(1̂, 2̂)

2 Three-dimensional rotations

For the two-dimensional rotations in the 1̂2̂ plane discussed above, it is implied that the axis of
rotation lies parallel to the 3̂ basis vector, which is oriented perpendicular to the plane. In a
rotation in three-dimensions, the axis of rotation can be oriented and located arbitrarily in three
dimensions, as shown in Figure 5.

As with (7), we wish to obtain a concise formula for the transformation G(θ, â,b) which rotates a
point’s position vector

x = x1̂ + y2̂ + z3̂

in E3 to the position vector

x′(θ, â,b) =G(θ, â,b)x

The transformation can be found using two approaches. In the first (simpler) approach, the rela-
tionships between the different vectors in Figure 5 are analysed graphically. The second approach
is a compositing one, in which the transformation is constructed from a sequence of simpler ones.
We begin with the graphical approach.
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Figure 5: Rotation in three dimensions about an arbitrary axis specified by a point b
lying on the axis and vector a parallel to the axis.

2.1 Graphical approach

In Figure 5, the vector a, and its normalised form â, lie parallel to the axis of rotation. The point b
is specified to lie somewhere on the axis. The pair (â,b) therefore uniquely determines the line of
the axis.

The point p is that point along the axis about which the rotation takes place. By observing that
the vector (p − b) is the component of the vector (x − b) in the direction â, we may write p − b =
((x − b) · â) â, because ((x − b) · â) is the magnitude of the projection of (x − b) in the direction â.
This gives

p = b + ((x − b) · â) â (10)
Next, observe that the points x, p and x′ are coplanar in the plane formed by sweeping the
vector x − p to the vector x′ − p. Define two unit vectors

n̂ = 1
|x − p|

(x − p) and m̂ = 1
|â × (x − p)|(â × (x − p))

By definition, â · â = n̂ · n̂ = m̂ · m̂ = 1. And since it is easy to show that for any vectors u and v
in E3,

u · (u × v) = v · (u × v) = 0
we have â · m̂ = n̂ · m̂ = 0. Also,

â · n̂ = 1
|x − p|

â · [x − p]

= 1
|x − p|

â · [x − b − ((x − b) · â) â]

= 1
|x − p|

[â · (x − b) − ((x − b) · â)â · â]

= 0

The set {n̂, m̂, â} therefore forms an orthonormal basis for E3, and {n̂, m̂} forms an orthonormal
basis for the plane containing x − p and x′ − p. Specifically, the vector x′ − p lying in the plane
may be expressed under {n̂, m̂}:

x′ − p = ξn̂ + ζm̂ for some ξ, ζ ∈ R

What are ξ and ζ? The view of x − p and x′ − p down the length of â is
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from which it is evident that
(x′ − p) =

∣∣x′ − p
∣∣ cos θ n̂ +

∣∣x′ − p
∣∣ sin θ m̂

= |x − p| cos θ n̂ + |x − p| sin θ m̂

= |x − p| cos θ 1
|x − p|

(x − p) + |x − p| sin θ 1
|â × (x − p)|(â × (x − p))

= cos θ (x − p) + |x − p| sin θ 1
|â × (|x − p| n̂)|(â × (x − p))

= cos θ (x − p) + sin θ 1
|â × n̂|

(â × (x − p))

But since |â × n̂| = |â| |n̂| sin(π/2) = 1,

x′ = p + cos θ (x − p) + sin θ (â × (x − p))

Can this be simplified using (10)?

x − p = x − b − ((x − b) · â) â

So
â × (x − p) = â × (x − b) − ((x − b) · â) â × â

= â × (x − b)

Finally, again using (10),

x′(θ, â,b) = G(θ, â,b)x
= b + ((x − b) · â) â + cos θ [x − b − ((x − b) · â) â] + sin θ [â × (x − b)]

(11)

This is a generalisation of a rotation in two dimensions (Eq. (7)) to a rotation in three dimensions.

Does (11) encapsulate the two-dimensional rotations? In the simplest case, suppose that the axis of
rotation lies parallel with the 3̂ basis vector, so â = 3̂, and that the point b is at the origin, b = 0.
A position vector in the 1̂2̂ plane is x = x1̂ + y2̂. Then using (11),

x′(θ, 3̂,0) = cos θ [x1̂ + y2̂] + sin θ [−y1̂ + x2̂]
= [x · (cos θ 1̂ − sin θ 2̂)] 1̂ + [x · (sin θ 1̂ + cos θ 2̂)] 2̂

which agrees with (4). Next, suppose that â = 2̂, b = 0 and x = x1̂ + z3̂.

1̂

2̂

3̂

b

â

x
x′θ
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Then using (11),

x′(θ, 2̂,0) = cos θ (x1̂ + z3̂) + sin θ (z1̂ − x3̂)
= (cos θ x+ sin θ z) 1̂ + (− sin θ x+ cos θ z) 2̂

as expected. Next, suppose that â = 3̂, b = b1̂ and x = x1̂ + y2̂.

2̂

1̂

x
x′

b
â

θ

Then using (11),

x′(θ, 3̂, b1̂) = b1̂ + cos θ [(x− b)1̂ + y2̂] + sin θ [−y1̂ + (x− b)2̂]
= [b + cos θ (x− b) − sin θ y] 1̂ + [cos θ y + sin θ (x− b)] 2̂

Specifically, for x = 31̂ + 2̂, x′(π
4 , 3̂, 21̂) = 21̂ +

√
2 2̂, as expected.

Next, suppose that â = 2̂, b = 11̂ + 23̂, θ = π
4 and x = 31̂ + 43̂.

1̂

2̂

3̂

θ

xx

x′b

â

Using (11),

x′(π/4, 2̂, 11̂ + 23̂) = 1̂ + 23̂ + cos(π/4)[21̂ + 23̂] + sin(π/4)[21̂ − 23̂]
= 21̂ +

√
2 3̂

2.2 Compositing approach

In a compositing approach to deriving (11), the desired three-diminensional transformation is con-
structed from a sequence of seven simpler ones. We begin by reproducing the schematic layout
shown in Figure 5. Vector a and point b define an axis of rotation. As before, we wish to rotate
any point x by angle θ about axis to obtain x′.

Step 1—Translate by −p so that p moves to origin. Given the expression for the point p
in (10), the translation transformation is

T (â,b,x) : y 7→ T (â,b,x)y = y − b − ((x − b) · â) â for any y ∈ E3 (12)
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Figure 6: Points x and x′, vector a, point b and angle θ.
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Step 2—Rotate about 2̂ s.t. a1 vanishes, i.e., s.t. a ⊥ 1̂. To rotate about 2̂ by angle (−ϕ),
(5) suggests the use of the rotation transformation

R1(ϕ) : y 7→ R1(ϕ)y (13)

where R1(ϕ) may be represented by the matrix

R1(ϕ) =

cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ


and since ϕ is the angle between 3̂ and the projection of â onto the 1̂3̂ plane,

cosϕ = a3√
a2

1 + a2
3

, sinϕ = a1√
a2

1 + a2
3

(14)

Applying the transformation to â gives:

R1(ϕ)â = (cosϕa1 − sinϕa3)1̂ + a22̂ + (sinϕa1 + cosϕa3)3̂

= a3a1 − a1a3√
a2

1 + a2
3

1̂ + a22̂ + a2
1 + a2

3√
a2

1 + a2
3

3̂

= a22̂ +
√
a2

1 + a2
3 3̂

(15)

so that, as expected, (R1(ϕ)â) · 1̂ vanishes. The transformed vector R1(ϕ)â lies in the 2̂3̂ plane.
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Step 3—Rotate about 1̂ s.t. a2 vanishes, i.e., s.t. â = 3̂. To rotate about 1̂ by angle (−ψ)
such that a2 vanishes, the rotation transformation is

R2(ψ) : y 7→ R2(ψ)y (16)

where R2(ψ) may be represented by the matrix

R2(ψ) =

1 0 0
0 cosψ − sinψ
0 sinψ cosψ


The angle ψ is the angle between 3̂ and the projection of a onto the 2̂3̂ plane. That projection
vector is given by (15). So

cosψ =
√
a2

1 + a2
3 , sinψ = a2 (17)

Applying the transformation to R1(ϕ)â gives:

R2(ψ)R1(ϕ)â = R2(ψ)(a22̂ +
√
a2

1 + a2
3 3̂)

=
(
a2 cosψ −

√
a2

1 + a2
3 sinψ

)
2̂ +

(
a2 sinψ +

√
a2

1 + a2
3 cosψ

)
3̂

=
(
a2

√
a2

1 + a2
3 −

√
a2

1 + a2
3 a2

)
2̂ +

(
a2

2 + (a2
1 + a2

3)
)

3̂

= 3̂

so that, as expected, (R2(ψ)R1(ϕ)â) · 2̂ vanishes.

x

x′

1̂

2̂

3̂
a

b

p

Step 4—Rotate about â = 3̂ by angle θ. The rotation transformation is

R3(θ) : y 7→ R3(θ)y (18)

where R3(θ) may be represented by the matrix

R3(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


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Step 5—Rotate back about 1̂. The rotation transformation is

R2(−ψ) : y 7→ R2(−ψ)y (19)
x

1̂

2̂

3̂

a bp

Step 6—Rotate back about 2̂. The rotation transformation is

R1(−ϕ) : y 7→ R1(−ϕ)y (20)
x

1̂

2̂

3̂

a
b p

Step 7—Translate back. The translation transformation is

T (−â,−b,−x) : y 7→ T (−â,−b,−x)y = y + b + ((x − b) · â) â (21)
x

a
b p

1̂

2̂

3̂

The composition of transformations is

C(θ, â,b,x) : y 7→ C(θ, â,b,x) y for any y ∈ E3 (22)
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with

C(θ, â,b,x) = T (−â,−b,−x)R1(−ϕ(â))R2(−ψ(â))R3(θ)R2(ψ(â))R1(ϕ(â))T (â,b,x) (23)

and with ϕ(â) and ψ(â) given by (14) and (17).

For the moment, consider just the rotational transformations. Write

C(θ, â,b,x) = T (−â,−b,−x)A(θ, ϕ(â), ψ(â))T (â,b,x) (24)

with
A(θ, ϕ, ψ) = R1(−ϕ)R2(−ψ)R3(θ)R2(ψ)R1(ϕ)

It is easy to show that

R2(ψ)R1(ϕ) =

 cosϕ 0 − sinϕ
− sinϕ sinψ cosψ − cosϕ sinψ
sinϕ cosψ sinψ cosϕ cosψ


R1(−ϕ)R2(−ψ) =

 cosϕ − sinϕ sinψ sinϕ cosψ
0 cosψ sinψ

− sinϕ − cosϕ sinψ cosϕ cosψ


R3(θ)R2(ψ)R1(ϕ) =

cos θ cosϕ+ sin θ sinϕ sinψ − sin θ cosψ − cos θ sinϕ+ sin θ cosϕ sinψ
sin θ cosϕ− cos θ sinϕ sinψ cos θ cosψ − sin θ sinϕ− cos θ cosϕ sinψ

sinϕ cosψ sinψ cosϕ cosψ


After some algebraic manipulation, and applying the definitions of (14) and (17), we arrive at

A(θ, ϕ, ψ) = A(θ, â)

=

 a2
1 a1a2 a1a3

a1a2 a2
2 a2a3

a1a3 a2a3 a2
3

 +

 0 −a3 a2
a3 0 −a1

−a2 a1 0

 sin θ −

a2
1 − 1 a1a2 a1a3
a1a2 a2

2 − 1 a2a3
a1a3 a2a3 a2

3 − 1

 cos θ

The ij-the matrix element may be written as

[A(θ, â)]ij = aiaj + ϵikjak sin θ + (aiaj − δij) cos θ (25)

where

δij ≡
{

1, for i = j

otherwise

ϵijk ≡


0, for i = j or i = k or j = k.
1, for any even permutation of ijk, e.g., 123.

−1, otherwise, e.g., 132.

and where summation over the index k is assumed.

Next, the translation transformations. The i-th components of T (â,b,x)y (Eq. (12)) and T (−â,−b,−x)
(Eq. (21)) are

[T (â,b,x)y]i = (δij − aiaj)(xj − bj) + yi − xi

[T (−â,−b,−x)y]i = −(δij − aiaj)(xj − bj) + yi + xi
(26)

Using (25) and (26), the i-th component of C(θ, â,b,x) x in (22) is

[C(θ, â,b,x) x]i = − (δij − aiaj)(xj − bj) + xi + [A(θ, â)T (â,b,x)x]i
= − (δij − aiaj)(xj − bj) + xi

+ [aiaj + ϵikjak sin θ + (aiaj − δij) cos θ][(δjl − ajal)(xl − bl)]
Finally, by expanding the terms,

[C(θ, â,b,x) x]i = bi + (xk − bk)akai + cos θ(xi − bi − (xk − bk)akai) + sin θϵiklak(xl − bl)
= bi + ((x − b) · â)ai + cos θ [(x − b)i − ((x − b) · â)ai] + sin θ [â × (x − b)]i

which is exactly the i-th component in (11).

12


